
The conventional approach of moving stored data to the CPU for computation has become a major performance bottleneck for emerging scale-out data-intensive applications due to their limited data reuse. At the same time, the advancement in integration technologies have made the decade-old concept of coupling compute units close to the memory (called Near-Memory Computing) more viable. Processing right at the 'home' of data can completely diminish the data movement problem of data-intensive applications. This paper focuses on analyzing and organizing the extensive body of literature on near-memory computing across various dimensions: starting from the memory level where this paradigm is applied, to the granularity of the application that could be executed on the near-memory units. We highlight the challenges as well as the critical need of evaluation methodologies that can be employed in designing these special architectures. Using a case study, we present our methodology and also identify topics for future research to unlock the full potential of near-memory computing.
Near data processing, Modeling, Application characterization, Processing in memory, Computer architecture, Data centric computing, Survey, Near-memory computing
Near data processing, Modeling, Application characterization, Processing in memory, Computer architecture, Data centric computing, Survey, Near-memory computing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
