
In seeking to improve the workload efficiency and inference capability of context-aware systems, we propose a new framework for an advanced teaming mechanism that uses improved bath propagation (BP) algorithm. Even though a learning mechanism is one of the most important parts in a context-aware system, the existing algorithms focused on facilitating systems by elaborating the learning mechanism with user`s context information are rare. BP is the most adaptable algorithm for learning mechanism of context-aware systems. By using the improved BP algorithm, the framework we proposed drastically improves the inference capability so that the overall performance is far better than other systems. Also, using the special system cache, the framework manages the workload efficiently. Experiments show that there is an obvious improvement in overall performanre of the context-awareness systems using the proposed framework.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
