Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theoretical Computer Science
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-ENS-LYON
Conference object . 2023
Data sources: HAL-ENS-LYON
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Theoretical Computer Science
Article . 2025 . Peer-reviewed
http://dx.doi.org/10.1016/j.tc...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Complete Decomposition of Symmetric Tensors in Linear Time and Polylogarithmic Precision

Complete decomposition of symmetric tensors in linear time and polylogarithmic precision
Authors: Koiran, Pascal; Saha, Subhayan;

Complete Decomposition of Symmetric Tensors in Linear Time and Polylogarithmic Precision

Abstract

We study symmetric tensor decompositions, i.e. decompositions of the input symmetric tensor T of order 3 as sum of r 3rd-order tensor powers of u_i where u_i are vectors in \C^n. In order to obtain efficient decomposition algorithms, it is necessary to require additional properties from the u_i. In this paper we assume that the u_i are linearly independent. This implies that r is at most n, i.e., the decomposition of T is undercomplete. We will moreover assume that r=n (we plan to extend this work to the case where r is strictly less than n in a forthcoming paper). We give a randomized algorithm for the following problem: given T, an accuracy parameter epsilon, and an upper bound B on the condition number of the tensor, output vectors u'_i such that u_i and u'_i differ by at most epsilon (in the l_2 norm and up to permutation and multiplication by phases) with high probability. The main novel features of our algorithm are: (1) We provide the first algorithm for this problem that works in the computation model of finite arithmetic and requires only poly-logarithmic (in n, B and 1/epsilon) many bits of precision. (2) Moreover, this is also the first algorithm that runs in linear time in the size of the input tensor. It requires O(n^3) arithmetic operations for all accuracy parameters epsilon = 1/poly(n).

Updated with the version accepted to Theoretical Computer Science

Keywords

FOS: Computer and information sciences, finite precision arithmetic, simultaneous diagonalisation algorithm, F.2.1; G.1.3, Analysis of algorithms and problem complexity, Diagonalization, Jordan forms, G.1.3, Numerical Analysis (math.NA), [INFO] Computer Science [cs], Computational Complexity (cs.CC), Computer Science - Computational Complexity, tensor decomposition, computational linear algebra, Multilinear algebra, tensor calculus, Computer Science - Data Structures and Algorithms, 68W40, 65F22, 68Q87, FOS: Mathematics, Data Structures and Algorithms (cs.DS), Mathematics - Numerical Analysis, F.2.1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Funded by
Related to Research communities