Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
INRIA2
Article . 2025
Data sources: INRIA2
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ACM Transactions on Graphics
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exact Predicates, Exact Constructions and Combinatorics for Mesh CSG.

Authors: Lévy, Bruno;

Exact Predicates, Exact Constructions and Combinatorics for Mesh CSG.

Abstract

This article introduces a general mesh intersection algorithm that exactly computes the so-called Weiler model (also called a 3D arrangement) and that uses it to implement boolean operations with arbitrary multi-operand expressions, CSG (constructive solid geometry) and some mesh repair operations. From an input polygon soup, the algorithm first computes the co-refinement, with an exact representation of the intersection points. Then, the decomposition of 3D space into volumetric regions (Weiler model) is constructed, by sorting the facets around the non-manifold intersection edges (radial sort), using specialized exact predicates. Finally, based on the input boolean expression, the triangular facets that belong to the boundary of the result are classified. The main contribution is a 2D Constrained Delaunay Triangulation with exact coordinates that represent the intersections, thanks to two geometric kernels that are proposed, tested and discussed (arithmetic expansions and multi-precision floating-point). As a guiding principle, the combinatorial information shared between each step is kept as simple as possible. It is made possible by treating all the particular cases in the kernel. In particular, triangles with intersections are remeshed using the (uniquely defined) Constrained Delaunay Triangulation, with symbolic perturbations to disambiguate configurations with co-cyclic points. It makes it easy to discard the duplicated triangles that appear when remeshing overlapping facets. The method is tested and compared with previous work, on the existing “thingi10K” dataset (to test co-refinement and mesh repair) and on a new “thingiCSG” dataset made publicly available 1 (to test the full CSG pipeline) on a variety of interesting examples featuring different types of “pathologies”.

Keywords

Computational Geometry (cs.CG), FOS: Computer and information sciences, exact predicates, Computer Science - Computational Geometry, constructive solid geometry, mesh processing, [INFO] Computer Science [cs]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities