Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science and Transpor...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OPTIMIZATIONAL TRACTION TASKS ON THE RAILWAY NETWORK

Authors: null M. G. Prytula; null О. А. Pasechnyk;

OPTIMIZATIONAL TRACTION TASKS ON THE RAILWAY NETWORK

Abstract

Purpose. The paper involves the development of information and algorithmic support for conducting the optimization traction and energy calculations on the railway network for their further use in decision-making systems – systems for efficient management of the transport process. Methodology. The system is based on the graph-analytic system, the model of the train with different types of traction, the methods of optimal control of the train and the fundamental algorithms on the weighted graphs with possible parallel ribs (arcs). In the complex, these components of the system provide finding the tracks on the chart-diagram according to the given criteria, conducting the optimization traction-energy calculations according to different criteria, as well as conducting a comparative analysis of the obtained results. The reliability of the results has been repeatedly checked by available methods for varying complexity of race according to the plan and profile of the course. For this purpose, data obtained as a result of control visits using dynamometric cars were used. Also a comparative analysis of the modes in operation of trains, calculated and received by qualified drivers on different races was conducted. Findings. The problem of efficient operation of various types and modifications of locomotives, involved in the implementation of trains schedules for different purposes and loads is considered. Presentations of direct and inverse optimization, according to various criteria, of the regime tasks on the railway network and variants of their effective solution are given. The analysis of the results of the developed mathematical support and the ideas of implemented algorithms is given. Originality. The paper proposes the establishment of the network optimization problems that arise at the stages of the developing the plan for the formation, construction of traffic schedules, transmission capacity assessment and the calculation of optimal parameters for the composite graphs of motion, etc. The system approach is important to ensure the combination of the developed network structure in the universal terms of the graph theory with the system of actualization of their parameters. Pull and energy efficiency calculations are carried out by combinatorial optimization methods, which ensured the maximum level of automation of the process in solving a large set of direct and inverse regime problems with different optimality criteria. Practical value. The information and algorithmic support for the automation of the process in solving the direct and reverse regime traction-energy problems on the railway network was developed. It was tested in the process of calculating the main components for the formation of traffic schedules, analysis of train driving modes, assessment in choosing the optimal parameters of the track reconstruction for high-speed and new types of trains (locomotives).

Keywords

traction calculations, railway network, TA1001-1280, mathematical support, mode of movement, Transportation engineering, traction calculations; railway network; fundamental algorithms; mode of movement; optimal mode; schedule; traffic safety; mathematical support, traffic safety, optimal mode, fundamental algorithms, schedule, тяговые расчеты; железнодорожная сеть; фундаментальные алгоритмы; режим движения; оптимальный режим; график движения; безопасность движения; математическое обеспечение, тягові розрахунки; залізнична мережа; фундаментальні алгоритми; режим руху; оптимальний режим; графік руху; безпека руху; математичне забезпечення

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
gold