Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Food Analytical Meth...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Food Analytical Methods
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metabolomic Strategies Based on High-Resolution Mass Spectrometry as a Tool for Recognition of GMO (MON 89788 Variety) and Non-GMO Soybean: a Critical Assessment of Two Complementary Methods

Authors: Vojtech Hrbek; Veronika Krtkova; Josep Rubert; Hana Chmelarova; Katerina Demnerova; Jaroslava Ovesna; Jana Hajslova;

Metabolomic Strategies Based on High-Resolution Mass Spectrometry as a Tool for Recognition of GMO (MON 89788 Variety) and Non-GMO Soybean: a Critical Assessment of Two Complementary Methods

Abstract

This study was focused on distinguishing of genetically modified organism (Monsanto 89788 variety) and conventional soybeans by employing high-resolution mass spectrometry (HRMS) techniques for non-target screening of sample extracts. Two hyphenated instrumental platforms represented by (i) ultrahigh-performance liquid chromatography (U-HPLC) coupled to quadrupole/time of flight and (ii) ambient mass spectrometry with direct analysis in real time (DART) ion source-coupled OrbitrapMS were used. The statistical processing of generated data (metabolomic fingerprints) was performed by multivariate data analysis; principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) showed that both employed techniques enabled correct classification of genetically modified and conventional soybeans. In addition, some phosphatidylcholines and sugars were identified as the most significant markers.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!