
This paper proposes two second-order continuous-time algorithms to solve the economic power dispatch problem in smart grids. The collective aim is to minimize a sum of generation cost function subject to the power demand and individual generator constraints. First, in the framework of nonsmooth analysis and algebraic graph theory, one distributed second-order algorithm is developed and guaranteed to find an optimal solution. As a result, the power demand constraints can be kept all the time under appropriate initial condition. The second algorithm is under a centralized framework, and the optimal solution is robust in the sense that different initial power conditions do not change the convergence of the optimal solution. Finally, simulation results based on five-unit system, IEEE 30-bus system, and IEEE 300-bus system show the effectiveness and performance of the proposed continuous-time algorithms. The examples also show that the convergence rate of second-order algorithm is faster than that of first-order distributed algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 122 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
