Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Networksarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Networks
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pergamos
Article . 2009
Data sources: Pergamos
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computer Networks
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Finding the K highest-ranked answers in a distributed network

Authors: Zeinalipour-Yazdi, Constantinos D.; Vagena, Zografoula; Kalogeraki, Vana; Gunopulos, Dimitrios; Tsotras, Vassilis J.; Vlachos, Michail; Koudas, Nick; +9 Authors

Finding the K highest-ranked answers in a distributed network

Abstract

In this paper, we present an algorithm for finding the k highest-ranked (or Top-k) answers in a distributed network. A Top-K query returns the subset of most relevant answers, in place of all answers, for two reasons: (i) to minimize the cost metric that is associated with the retrieval of all answers; and (ii) to improve the recall and the precision of the answer-set, such that the user is not overwhelmed with irrelevant results. Our study focuses on multi-hop distributed networks in which the data is accessible by traversing a network of nodes. Such a setting captures very well the computation framework of emerging Sensor Networks, Peer-to-Peer Networks and Vehicular Networks. We present the Threshold Join Algorithm (TJA), an efficient algorithm that utilizes a non-uniform threshold on the queried attribute in order to minimize the transfer of data when a query is executed. Additionally, TJA resolves queries in the network rather than in a centralized fashion which further minimizes the consumption of bandwidth and delay. We performed an extensive experimental evaluation of our algorithm using a real testbed of 75 workstations along with a trace-driven experimental methodology. Our results indicate that TJA requires an order of magnitude less communication than the state-of-the-art, scales well with respect to the parameter k and the network topology.

Keywords

Sensor networks, Ad hoc networks, Query processing, Cost metric, Arts computing, Join algorithms, Peer-to-peer networks, P2P networks, Network topologies, Distributed networks, Multi hops, Experimental methodologies, Non-uniform, Electric network topology, Efficient algorithms, Top-k queries, Information retrieval, Test beds, Experimental evaluations, Client server computer systems, Distributed Top-K query processing, Vehicular networks, Algorithms, Order of magnitudes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze
Related to Research communities