Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thermal E...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thermal Engineering
Article . 2023 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drying model based on the relative humidity profile of thin-layer tomatoes in an indirect solar dryer

Authors: Ahmed ALAMI; Lala RAJAOARISOA; Mohammed-hichem BENZAAMA; Abdeldjalil BENBAKHTI;

Drying model based on the relative humidity profile of thin-layer tomatoes in an indirect solar dryer

Abstract

This work defined the development of a model for thin-film drying of tomatoes using an indi-rect solar dryer. Drying experiments were carried out and the drying model was approximated by a simplified model determined by the measurements collected during the experiments, in particular, the measurement of the relative humidity of the tomato during two days of drying coupled with the thermal behaviour of the drying device in free convection. The results show that with good measurements, it is possible to approximate the drying characteristic curve by a linear model with very high statistical performance indicators. The experiments also show that depending on the drying process adopted, the water behaviour of the tomato can change. In addition, the thin-film drying model adopted made it possible to assess the solar drying kinetics of the tomato variety studied. The results obtained finally show that the dryness of the tomato is reached after about 14 hours of drying. The drying temperature reaches an average of 80°C, and the final product water content after the optimal drying time is about 0.40 kg.water/kg.ms on a dry basis. At the end of this study, we concluded that the drying air temperature represents the most important parameter affecting the drying kinetics. The very good agreement between the experimental and numerical results obtained shows that the theoretical model and assumptions used are acceptable, and that our calculation model is reliable.

Keywords

Thermodynamics and Statistical Physics, Drying Model;ExperimentalModel;Drying Dynamics;DryerDesign, Termodinamik ve İstatistiksel Fizik, 630, [SPI.GCIV.EC]Engineering Sciences [physics]/Civil Engineering/Eco-conception

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold