Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2015
Data sources: Hal
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hyper Article en Ligne
Conference object . 2015
https://doi.org/10.1109/hpcc-c...
Article . 2015 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Performance Prediction of ADAS Algorithms on Embedded Parallel Architectures

Authors: Saussard, Romain; Bouzid, Boubker; Vasiliu, Marius; Reynaud, Roger;

Optimal Performance Prediction of ADAS Algorithms on Embedded Parallel Architectures

Abstract

ADAS (Advanced Driver Assistance Systems) algorithms increasingly use heavy image processing operations. To embed this type of algorithms, semiconductor companies offer many heterogeneous architectures. These SoCs (System on Chip) are composed of different processing units, with different capabilities, and often with massively parallel computing unit. Due to the complexity of these SoCs, predicting if a given algorithm can be executed in real time on a given architecture is not trivial. In fact it is not a simple task for automotive industry actors to choose the most suited heterogeneous SoC for a given application. Moreover, embedding complex algorithms on these systems remains a difficult task due to heterogeneity, it is not easy to decide how to allocate parts of a given algorithm on the different computing units of a given SoC. In order to help automotive industry in embedding algorithms on heterogeneous architectures, we propose a novel approach to predict performances of image processing algorithms applicable on different types of computing units. Our methodology is able to predict a more or less wide interval of execution time with a degree of confidence using only high level description of algorithms, and a few characteristics of computing units.

Keywords

[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Heterogeneous Architectures, Image Processing, Performance Prediction, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Embedded Systems, [INFO.INFO-ES] Computer Science [cs]/Embedded Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Green