
ADAS (Advanced Driver Assistance Systems) algorithms increasingly use heavy image processing operations. To embed this type of algorithms, semiconductor companies offer many heterogeneous architectures. These SoCs (System on Chip) are composed of different processing units, with different capabilities, and often with massively parallel computing unit. Due to the complexity of these SoCs, predicting if a given algorithm can be executed in real time on a given architecture is not trivial. In fact it is not a simple task for automotive industry actors to choose the most suited heterogeneous SoC for a given application. Moreover, embedding complex algorithms on these systems remains a difficult task due to heterogeneity, it is not easy to decide how to allocate parts of a given algorithm on the different computing units of a given SoC. In order to help automotive industry in embedding algorithms on heterogeneous architectures, we propose a novel approach to predict performances of image processing algorithms applicable on different types of computing units. Our methodology is able to predict a more or less wide interval of execution time with a degree of confidence using only high level description of algorithms, and a few characteristics of computing units.
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Heterogeneous Architectures, Image Processing, Performance Prediction, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Embedded Systems, [INFO.INFO-ES] Computer Science [cs]/Embedded Systems
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV], Heterogeneous Architectures, Image Processing, Performance Prediction, [INFO.INFO-DC] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC], Embedded Systems, [INFO.INFO-ES] Computer Science [cs]/Embedded Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
