Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bulletin of the Sout...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A SEMI-SPLITTING FINITE DIFFERENCE SCHEME OF MATRIX COEFFICIENTS AND ITS APPLICATION TO DESCRIBE THE TSUNAMI PROPAGATION

КОНЕЧНО-РАЗНОСТНАЯ СХЕМА ПОЛУРАСЩЕПЛЕНИЯ МАТРИЧНЫХ КОЭФФИЦИЕНТОВ И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ОПИСАНИЯ РАСПРОСТРАНЕНИЯ ЦУНАМИ
Authors: Simonenko, Vadim Aleksandrovich; Skorkin, Nikolaĭ Andreevich; Uglov, Aleksandr Sergeevich;

A SEMI-SPLITTING FINITE DIFFERENCE SCHEME OF MATRIX COEFFICIENTS AND ITS APPLICATION TO DESCRIBE THE TSUNAMI PROPAGATION

Abstract

Summary: The well-known finite-difference scheme of Moretti of splitting the matrix coefficients of the system of gas dynamics equations involves writing equations in a special form -- pressure and internal energy are excluded from the equation using the equations of state for an ideal gas. In this paper the author proposes a modification of Moretti scheme as a finite-difference scheme of semi-splitting of matrix coefficients which do not intend to constitute a system of equations in a special form. The semi-splitting scheme allows solving equations of hyperbolic equations of state of any type, for example, even those in tabular form. For one-dimensional equations of propagation of circular wave on the water surface, that are the equations of hyperbolic type, the results of the calculations of the problem of the propagation of a surface wave in the ocean and the output of wave on the shore of the ocean area are given according to one-dimensional computational code of the shallow water theory. Verification of semi-splitting finite-difference scheme is performed by comparing the calculation results for the problem of the propagation of a single surface wave in the ocean and the problem of propagation of a wave train on the ocean surface with the results of calculations of the same problems cited in the work by C. Mader. To calculate the wave setup on the shore the approach is used in the computational code of the shallow water theory, which is described in the work by An. G. Marchuk, A. A. Anisimov. By comparing the calculation results with analytical solutions, the suitability of the computational code proposed in this work for the problem solution of the sea wave setup on land is demonstrated. Further development work is seen in the development of a two-dimensional program for calculating the surface wave propagation.

Keywords

Water waves, gravity waves; dispersion and scattering, nonlinear interaction, astronomical body, Surface waves in solid mechanics, Gas dynamics (general theory), tsunami, semi-splitting finite-difference scheme, shallow water theory, Finite difference methods applied to problems in fluid mechanics, seashore

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold