Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environment Developm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environment Development and Sustainability
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.60692/jd...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/ap...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Forecasting monthly rainfall using hybrid time-series models and Monte Carlo simulation amidst security challenges: a case study of five districts from northern Nigeria

التنبؤ بهطول الأمطار الشهري باستخدام نماذج السلاسل الزمنية الهجينة ومحاكاة مونت كارلو وسط التحديات الأمنية: دراسة حالة لخمس مقاطعات من شمال نيجيريا
Authors: Salim Jibrin Danbatta; Ahmad Muhammad; Asaf Varol; Daha Tijjani Abdurrahaman;

Forecasting monthly rainfall using hybrid time-series models and Monte Carlo simulation amidst security challenges: a case study of five districts from northern Nigeria

Abstract

Abstract Nigeria’s agricultural sector relies heavily on rainfall, but insecurity in various regions poses significant challenges. This study aims to address this issue by identifying secure, rain-rich areas in northern Nigeria to support sustainable agriculture. Two models, one integrating classical statistical methods (polynomial and Fourier series fittings) and another using a hybrid approach (artificial neural networks, polynomial, and Fourier series fittings), were employed to analyze historical rainfall data from 1981 to 2021 in the selected districts (Kano, Zaria, Bida, Nguru, and Yelwa) known for their rainfall levels and security stability. The study demonstrates that the machine learning-classical hybrid model outperforms existing models, including the classical-classical hybrid and benchmark models like Iwok’s (2016) model, Fourier series, and SARIMA models. Multi-step ahead forecasting with this hybrid model reveals potential changes in rainfall patterns. Notably, Kano, Zaria, Bida, and Yelwa are expected to experience increased rainfall from 2022 to 2026, while Nguru may initially witness decreased rainfall, with improvement in the final year (2026). In conclusion, this study introduces an effective approach for rainfall modeling and forecasting, facilitating the identification of secure agricultural regions in northern Nigeria. These findings carry implications for crop production and agricultural development, contributing to climate resilience efforts and assisting stakeholders in strategic decision-making for regional agricultural investments.

Keywords

Forecast Combination, Time series, Electricity Price and Load Forecasting Methods, Social Sciences, Management Science and Operations Research, Environmental science, Decision Sciences, FOS: Economics and business, Rainfall Forecasting, Engineering, Meteorology, FOS: Electrical engineering, electronic engineering, information engineering, Series (stratigraphy), FOS: Mathematics, Econometrics, Electrical and Electronic Engineering, Climatology, Global and Planetary Change, Geography, Statistics, Load Forecasting, Paleontology, Geology, Hybrid Modeling, FOS: Earth and related environmental sciences, Computer science, Agricultural Sustainability, Climate Resilience, Monte Carlo method, Global Drought Monitoring and Assessment, Environmental Science, Physical Sciences, Time Series Forecasting Methods, Short-Term Forecasting, Mathematics, Forecasting

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid