Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Advances in Mathemat...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Advances in Mathematics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advances in Mathematics
Article . 2014 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2014
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On a family of symmetric hypergeometric functions of several variables and their Euler type integral representation

Authors: Luo, Zhuangchu; Chen, Hua; Zhang, Changgui;

On a family of symmetric hypergeometric functions of several variables and their Euler type integral representation

Abstract

This paper is devoted to the family $\{G_n\}$ of hypergeometric series of any finite number of variables, the coefficients being the square of the multinomial coefficients $(\ell_1+...+\ell_n)!/(\ell_1!...\ell_n!)$, where $n\in\ZZ_{\ge 1}$. All these series belong to the family of the general Appell-Lauricella's series. It is shown that each function $G_n$ can be expressed by an integral involving the previous one, $G_{n-1}$. Thus this family can be represented by a multidimensional Euler type integral, what suggests some explicit link with the Gelfand-Kapranov-Zelevinsky's theory of $A$-hypergeometric systems or with the Aomoto's theory of hypermeotric functions. The quasi-invariance of each function $G_n$ with regard to the action of a finite number of involutions of $\CC^{*n}$ is also established. Finally, a particular attention is reserved to the study of the functions $G_2$ and $G_3$, each of which is proved to be algebraic or to be expressed by the Legendre's elliptic function of the first kind.

Related Organizations
Keywords

Other hypergeometric functions and integrals in several variables, A-hypergeometric systems, Aomoto's hypergeometric functions, Mathematics - Analysis of PDEs, Appell, Horn and Lauricella functions, Generalized hypergeometric series, \({}_pF_q\), Appell and Lauricella functions, Gelfand-Kapranov-Zelevinsky's theory, FOS: Mathematics, 33C65, generalized hypergeometric series, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid
Related to Research communities