Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical Methods in Fluids
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2001
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks

Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks.
Authors: Mai-Duy, Nam; Tran-Cong, Thanh;

Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks

Abstract

AbstractA numerical method based on radial basis function networks (RBFNs) for solving steady incompressible viscous flow problems (including Boussinesq materials) is presented in this paper. The method uses a ‘universal approximator’ based on neural network methodology to represent the solutions. The method is easy to implement and does not require any kind of ‘finite element‐type’ discretization of the domain and its boundary. Instead, two sets of random points distributed throughout the domain and on the boundary are required. The first set defines the centres of the RBFNs and the second defines the collocation points. The two sets of points can be different; however, experience shows that if the two sets are the same better results are obtained. In this work the two sets are identical and hence commonly referred to as the set of centres. Planar Poiseuille, driven cavity and natural convection flows are simulated to verify the method. The numerical solutions obtained using only relatively low densities of centres are in good agreement with analytical and benchmark solutions available in the literature. With uniformly distributed centres, the method achieves Reynolds number Re = 100 000 for the Poiseuille flow (assuming that laminar flow can be maintained) using the density of $11\times 11$, Re = 400 for the driven cavity flow with a density of $33\times 33$ and Rayleigh number Ra = 1 000 000 for the natural convection flow with a density of $27\times 27$. Copyright © 2001 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Other numerical methods (fluid mechanics), neural network, radial basis function networks, Navier-Stokes equations for incompressible viscous fluids, natural convection, mesh-free method, 532, Poiseuille flow, streamfunction-vorticity formulation, Navier-Stokes equations, driven cavity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
Beta
sdg_colorsSDGs:
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!