Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Renewable Power ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Renewable Power Generation
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Active power dispatch strategy of the wind farm based on improved multi‐agent consistency algorithm

Authors: Qi Yao; Yang Hu; Zhe Chen; Ji‐Zhen Liu; Hongming Meng;

Active power dispatch strategy of the wind farm based on improved multi‐agent consistency algorithm

Abstract

With the increase of wind power penetration in the power system, wind farm (WF) needs to limit active power and accurately track the instructions from the dispatch centre. Since a WF has many distributed wind turbines (WTs), it is a crucial issue to reasonably distribute power reference values to WTs. In this study, a novel active power dispatch (APD) strategy based on dynamic grouping of WTs is proposed. This strategy considers the characteristics and operating conditions of WTs, which can smoothen the power reference values to WTs and reduce fluctuations of key parameters of WTs. Then, a distributed dispatch strategy based on multi‐agent system consistency algorithm (MASCA) is applied for APD, which provides a dispatch strategy for WTs that does not require a centralised control centre. And the segmental virtual consistency algorithm is presented as an improvement of MASCA, which innovatively allows MASCA to support the grouping strategy for APD. Finally, the simulations show that the proposed strategy can enable WTs to obtain smoother reference power to track the dispatching instruction while reducing fluctuations of rotor speed and pitch angle, which is helpful to alleviate the fatigue of WTs. The dispatch strategy also shows good robustness when some communication is interrupted.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
gold