Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ King Abdullah Univer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Energy Reports
Article . 2024 . Peer-reviewed
https://dx.doi.org/10.60692/sh...
Other literature type . 2022
Data sources: Datacite
https://dx.doi.org/10.60692/j0...
Other literature type . 2022
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electric load forecasting under False Data Injection Attacks using deep learning

التنبؤ بالحمل الكهربائي تحت هجمات حقن البيانات الخاطئة باستخدام التعلم العميق
Authors: Arash Moradzadeh; Mostafa Mohammadpourfard; Charalambos Konstantinou; İstemihan Genç; Taesic Kim; Behnam Mohammadi‐Ivatloo;

Electric load forecasting under False Data Injection Attacks using deep learning

Abstract

Une prévision précise de la charge électrique à différents horizons temporels est un aspect essentiel pour les producteurs et les consommateurs d'électricité qui participent aux marchés de l'énergie afin de maximiser leur efficacité économique. De plus, une prédiction précise de la charge électrique contribue à des réseaux électriques robustes et résilients en raison de la minimisation des erreurs des schémas de planification des générateurs. La précision des méthodes de prévision de charge électrique existantes repose sur la qualité des données en raison d'environnements réels bruyants et sur l'intégrité des données en raison de cyberattaques malveillantes. Cet article propose un cadre d'apprentissage profond cyber-sécurisé qui prédit avec précision la charge électrique dans les réseaux électriques pour un horizon temporel allant d'une heure à une semaine. Le cadre d'apprentissage profond proposé intègre systématiquement les modèles Autoencoder (AE), Convolutional Neural Network (CNN) et Long Short-Term Memory (LSTM) (AE-CLSTM). La faisabilité de la solution proposée est validée en utilisant des données de réseau réalistes acquises auprès du réseau de distribution de Tabriz, en Iran. Comparée à d'autres méthodes de prévision de charge, la méthode proposée montre la plus grande précision à la fois dans un cas normal avec un bruit réel et une attaque furtive par fausse injection de données (FDIA). La méthode de prévision de charge proposée est pratique et appropriée pour atténuer le bruit dans les attaques de données et d'intégrité du monde réel.

La previsión precisa de la carga eléctrica en diferentes horizontes temporales es un aspecto esencial para los productores y consumidores de electricidad que participan en los mercados energéticos con el fin de maximizar su eficiencia económica. Además, la predicción precisa de la carga eléctrica contribuye a las redes eléctricas robustas y resistentes debido a la minimización de errores de los esquemas de programación de los generadores. La precisión de los métodos de pronóstico de carga eléctrica existentes se basa en la calidad de los datos debido a los entornos ruidosos del mundo real y la integridad de los datos debido a los ciberataques maliciosos. Este documento propone un marco de aprendizaje profundo ciberseguro que predice con precisión la carga eléctrica en las redes eléctricas durante un horizonte temporal que abarca desde una hora hasta una semana. El marco de aprendizaje profundo propuesto integra sistemáticamente los modelos Autoencoder (AE), Convolutional Neural Network (CNN) y Long Short-Term Memory (LSTM) (AE-CLSTM). La viabilidad de la solución propuesta se valida utilizando datos de red realistas adquiridos de la red de distribución de Tabriz, Irán. En comparación con otros métodos de pronóstico de carga, el método propuesto muestra la mayor precisión tanto en un caso normal con ruido del mundo real como en un ataque sigiloso de inyección de datos falsos (FDIA). El método de pronóstico de carga propuesto es práctico y adecuado para mitigar el ruido en datos del mundo real y ataques a la integridad.

Precise electric load forecasting at different time horizons is an essential aspect for electricity producers and consumers who participate in energy markets in order to maximize their economic efficiency. Moreover, accurate prediction of the electric load contributes toward robust and resilient power grids due to the error minimization of generators scheduling schemes. The accuracy of the existing electric load forecasting methods relies on data quality due to noisy real-world environments, and data integrity due to malicious cyber-attacks. This paper proposes a cyber-secure deep learning framework that accurately predicts electric load in power grids for a time horizon spanning from an hour to a week. The proposed deep learning framework systematically integrates Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) models (AE-CLSTM). The feasibility of the proposed solution is validated by using realistic grid data acquired from the distribution network of Tabriz, Iran. Compared to other load forecasting methods, the proposed method shows the highest accuracy in both a normal case with real-world noise and a stealthy False Data Injection Attack (FDIA). The proposed load forecasting method is practical and suitable for mitigating noise in real-world data and integrity attacks.

يعد التنبؤ الدقيق بالأحمال الكهربائية في آفاق زمنية مختلفة جانبًا أساسيًا لمنتجي الكهرباء والمستهلكين الذين يشاركون في أسواق الطاقة من أجل تعظيم كفاءتهم الاقتصادية. علاوة على ذلك، يساهم التنبؤ الدقيق بالحمل الكهربائي في إنشاء شبكات طاقة قوية ومرنة بسبب تقليل مخططات جدولة المولدات إلى الحد الأدنى. تعتمد دقة طرق التنبؤ بالحمل الكهربائي الحالية على جودة البيانات بسبب بيئات العالم الحقيقي الصاخبة، وسلامة البيانات بسبب الهجمات الإلكترونية الخبيثة. تقترح هذه الورقة إطارًا للتعلم العميق الآمن عبر الإنترنت يتنبأ بدقة بالحمل الكهربائي في شبكات الطاقة لفترة زمنية تمتد من ساعة إلى أسبوع. يدمج إطار التعلم العميق المقترح بشكل منهجي نماذج الترميز التلقائي (AE) والشبكة العصبية الالتفافية (CNN) والذاكرة طويلة المدى (LSTM). يتم التحقق من جدوى الحل المقترح باستخدام بيانات شبكة واقعية تم الحصول عليها من شبكة التوزيع في تبريز، إيران. بالمقارنة مع طرق التنبؤ بالأحمال الأخرى، تُظهر الطريقة المقترحة أعلى دقة في كل من الحالة العادية مع ضوضاء العالم الحقيقي والهجوم الخفي لحقن البيانات الخاطئة (FDIA). طريقة التنبؤ بالحمل المقترحة عملية ومناسبة للتخفيف من الضوضاء في هجمات البيانات والنزاهة في العالم الحقيقي.

Countries
Turkey, Saudi Arabia
Keywords

Artificial neural network, Artificial intelligence, Cybersecurity, Electricity Price and Load Forecasting Methods, Geometry, Convolutional neural network, Cybersecurity; Deep learning; False Data Injection Attack; Load forecasting; Smart grid, Smart grid, Noise (video), Quantum mechanics, Real-time computing, Electric power system, Engineering, Deep Learning, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, Image (mathematics), Electrical and Electronic Engineering, Grid, Data mining, Load forecasting, Electricity Price Forecasting, Electricity Theft Detection in Smart Grids, Physics, Load Forecasting, Deep learning, Autoencoder, Security Challenges in Smart Grid Systems, Power (physics), Computer science, TK1-9971, Control and Systems Engineering, False Data Injection Attacks, Electrical engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, False Data Injection Attack, Short-Term Forecasting, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 1%
Green
gold