Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2025 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2025
Data sources: Radboud Repository
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Article . 2025
License: CC BY
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-CEA
Article . 2025
License: CC BY
Data sources: HAL-CEA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSU
Article . 2025
License: CC BY
Data sources: HAL-INSU
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.13016/m2...
Other literature type . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 12 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The infrared counterpart and proper motion of magnetar SGR 0501+4516

Authors: Chrimes, A.A.; Levan, A.J.; Lyman, J.D.; Borghese, A.; Dhillon, V.S.; Esposito, P.; Fraser, M.; +15 Authors

The infrared counterpart and proper motion of magnetar SGR 0501+4516

Abstract

Aims. Soft gamma repeaters (SGRs) are highly magnetised neutron stars (magnetars) notable for their gamma-ray and X-ray outbursts. We used near-infrared (NIR) imaging of SGR 0501+4516 in the days, weeks, and years after its 2008 outburst to characterise the multi-wavelength emission, and to obtain a proper motion from our long temporal baseline observations. Methods. We present short- and long-term monitoring of the IR counterpart of SGR 0501+4516 and a measurement of its proper motion. Unlike most magnetars, the source has only moderate foreground extinction with minimal crowding. Our observations began only ∼2 hours after the first activation of SGR 0501+4516 in August 2008 and continued for ∼4 years, including two epochs of Hubble Space Telescope (HST) imaging. The proper motion constraint was improved using a third HST epoch from 10 years later. Results. The NIR and X-rays faded slowly during the first week, which was followed by a steeper power-law decay. The behaviour is satisfactorily fit by a broken power law. Three epochs of HST imaging with a 10-year baseline allowed us to determine the quiescent level and to measure a proper motion of μ = 5.4 ± 0.6 mas yr−1. This corresponds to a low transverse peculiar velocity of v ≃ 51 ± 14 km s−1 (at 2 kpc). The magnitude and direction of the proper motion rules out supernova remnant HB9 as the birth site. We can find no other supernova remnants or groups of massive stars within the region traversed by SGR 0501+4516 during its characteristic lifetime (∼20 kyr). Conclusions. Our observations of SGR 0501+4516 suggest three possibilities: that some magnetars are significantly older than expected, that their progenitors produce low supernova ejecta masses, or that they can be formed through accretion-induced collapse or low-mass neutron star mergers. Although the progenitor of SGR 0501+4516 remains unclear, we propose that SGR 0501+4516 is the best Galactic candidate for a magnetar formed through a mechanism other than massive star core-collapse.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), Astronomy, Stars: individual: SGR0501+4516, FOS: Physical sciences, Astronomical Sciences, near-infrared (NIR) imaging, multi-wavelength emission, Astrophysics - Astrophysics of Galaxies, Soft gamma repeaters (SGRs), Stars: neutron, Stars: kinematics and dynamics, Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), Physical Sciences, Stars: magnetars, gamma-ray, Proper motions, [PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph], Astrophysics - High Energy Astrophysical Phenomena, Solar and Stellar Astrophysics (astro-ph.SR), ISM: supernova remnants, X-ray outbursts

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid