
We study a simple motion pursuit differential game of many pursuers and one evader in a Hilbert space $l_{2}$. The control functions of the pursuers and evader are subject to integral and geometric constraints respectively. Duration of the game is denoted by positive number $\theta $. Pursuit is said to be completed if there exist strategies $u_{j}$ of the pursuers $P_{j}$ such that for any admissible control $v(\cdot)$ of the evader $E$ the inequality $\|y(\tau)-x_{j}(\tau)\|\leq l_{j}$ is satisfied for some $ j\in \{1,2, \dots\}$ and some time $\tau$. In this paper, sufficient conditions for completion of pursuit were obtained. Consequently strategies of the pursuers that ensure completion of pursuit are constructed.
Differential game, geometric constraint, Physics, QC1-999, evader, Hilbert space, pursuer, integral constraint
Differential game, geometric constraint, Physics, QC1-999, evader, Hilbert space, pursuer, integral constraint
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
