Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Delay Prediction for ASIC HLS: Comparing Graph-Based and Nongraph-Based Learning Models

Comparing Graph-Based and Nongraph-Based Learning Models
Authors: Sayandip De; Muhammad Shafique; Henk Corporaal;

Delay Prediction for ASIC HLS: Comparing Graph-Based and Nongraph-Based Learning Models

Abstract

While high-level synthesis (HLS) tools offer faster design of hardware accelerators with different area versus delay tradeoffs, HLS-based delay estimates often deviate significantly from results obtained from ASIC logic synthesis (LS) tools. Current HLS tools rely on simple additive delay models which fail to capture the downstream optimizations performed during LS and technology mapping. Inaccurate delay estimates prevent fast and accurate design-space exploration without performing time-consuming LS tasks. In this work, we exploit different machine learning models which automatically learn to map the different downstream optimizations onto the HLS critical paths. In particular, we compare graph-based and nongraph-based learning models to investigate their efficacy, devise hybrid models to get the best of the both worlds. To carry out our learning-assisted methodology, we create a dataset of different HLS benchmarks and develop an automated framework, which extends a commercial HLS toolchain, to extract essential information from LS critical path and automatically matches this information to HLS path. This is a nontrivial task to perform manually due to difference in level of abstractions. Finally, we train the proposed hybrid models through inductive learning and integrate them in the commercial HLS toolchain to improve delay prediction accuracy. Experimental results demonstrate significant improvements in delay estimation accuracy across a wide variety of benchmark designs. We demonstrate that the graph-based models can infer essential structural features from the input design, while incorporating them into traditional nongraph-based models can significantly improve the model accuracy. Such 'hybrid' models can improve delay prediction accuracy by 93% compared to simple additive models and provide 175× speedup compared to LS. Furthermore, we discuss key insights from our experiments, identifying the influence of different HLS features on model performance.

Related Organizations
Keywords

Delay/timing prediction, high-level synthesis (HLS), machine learning (ML), electronic design automation (EDA), graph neural networks, logic synthesis (LS)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
hybrid