Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Appl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-Rennes 1
Article . 2021
Data sources: HAL-Rennes 1
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
SIAM Journal on Applied Dynamical Systems
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rigorous Verification of Hopf Bifurcations via Desingularization and Continuation

Rigorous verification of Hopf bifurcations via desingularization and continuation
Authors: van den Berg, Jan; Lessard, Jean-Philippe; Queirolo, Elena;

Rigorous Verification of Hopf Bifurcations via Desingularization and Continuation

Abstract

In this paper we present a general approach to rigorously validate Hopf bifurcations as well as saddle-node bifurcations of periodic orbits in systems of ODEs. By a combination of analytic estimates and computer-assisted calculations, we follow solution curves of cycles through folds, checking along the way that a single nondegenerate saddle-node bifurcation occurs. Similarly, we rigorously continue solution curves of cycles starting from their onset at a Hopf bifurcation. We use a blowup analysis to regularize the continuation problem near the Hopf bifurcation point. This extends the applicability of validated continuation methods to the mathematically rigorous computational study of bifurcation problems.

31 pages, 8 figures

Keywords

General methods in interval analysis, Hopf bifurcation ¨continuation ¨desingularization ¨computer-assisted proofs Mathematics Subject Classification (2010) 37G15 ¨65P30 ¨65G40 ¨34C25 ¨37C27, 34C25, [MATH] Mathematics [math], Desingularization, Dynamical Systems (math.DS), computer-assisted proofs, Bifurcations of limit cycles and periodic orbits in dynamical systems, Numerical bifurcation problems, computer-assisted proofs AMS subject classifications. 37G15, FOS: Mathematics, Computational methods for bifurcation problems in dynamical systems, Hopf bifurcation, Mathematics - Numerical Analysis, Mathematics - Dynamical Systems, Computer-assisted proofs, 65P30, desingularization, Continuation, Numerical Analysis (math.NA), 37C27, 68V05, 37G15, 37C27, Hopf bifurcation continuation desingularization computer-assisted proofs AMS subject classifications. 37G15 65P30 65G40 34C25 37C27, 65G40, continuation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid