Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Griffith University:...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reviews in Environmental Science and Bio/Technology
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils

Authors: Frederik J. T. van der Bom; Peter M. Kopittke; Nelly S. Raymond; Ryo Sekine; Enzo Lombi; Carsten W. Mueller; Casey L. Doolette;

Methods for assessing laterally-resolved distribution, speciation and bioavailability of phosphorus in soils

Abstract

Refereed/Peer-reviewed Supply of phosphorus (P) as an agricultural input depends on a limited mineral rock phosphate reserve, but inefficient use means this resource is not being used sustainably. Moreover, losses of P from historically accumulated soil reserves can cause substantial environmental harm. Development of sustainable P management will require optimization of P use efficiency, with this needing a better understanding of the distribution and chemical behaviour of P in soils, including both P applied as a fertilizer and native P. In this review, we discuss in-situ methods for microscopic mapping of P distribution, speciation and plant-available P fractions in soils, including scanning electron microscopy-based energy-dispersive X-ray spectroscopy, nanoscale secondary ion mass spectroscopy, X-ray fluorescence microscopy (and associated X-ray absorption spectroscopy), Raman and infrared spectroscopies, diffusive gradients in thin films coupled with laser ablation inductively coupled plasma mass spectrometry or colorimetry, and autoradiography. These methods can complement the traditional (bulk) methods for P analysis as well as deliver valuable information in their own right or in conjunction as part of an imaging cascade. We compare the merits and limitations of these techniques, which can serve to play a key role in answering questions about P behaviour in soil, from the microscopic to macroscopic scale, and provide some examples of how they may support researchers in their particular research.

Keywords

Science & Technology, spatial distribution, Phosphorus mapping, Environmental Sciences & Ecology, Imaging techniques, phosphorus chemistry, phosphorus mapping, imaging techniques, Phosphorus chemistry, Environmental sciences, Soil sciences, Biotechnology & Applied Microbiology, Spectroscopy techniques, Phosphorus imaging, spectroscopy techniques, Spatial distribution, Life Sciences & Biomedicine, phosphorus imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
Green