Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Reinforcement Learning for Solving Vehicle Routing Problems With Backhauls

Authors: Conghui Wang; Zhiguang Cao; Yaoxin Wu; Long Teng; Guohua Wu;

Deep Reinforcement Learning for Solving Vehicle Routing Problems With Backhauls

Abstract

The vehicle routing problem with backhauls (VRPBs) is a challenging problem commonly studied in computer science and operations research. Featured by linehaul (or delivery) and backhaul (or pickup) customers, the VRPB has broad applications in real-world logistics. In this article, we propose a neural heuristic based on deep reinforcement learning (DRL) to solve the traditional and improved VRPB variants, with an encoder-decoder structured policy network trained to sequentially construct the routes for vehicles. Specifically, we first describe the VRPB based on a graph and cast the solution construction as a Markov decision process (MDP). Then, to identify the relationship among the nodes (i.e., linehaul and backhaul customers, and the depot), we design a two-stage attention-based encoder, including a self-attention and a heterogeneous attention for each stage, which could yield more informative representations of the nodes so as to deliver high-quality solutions. The evaluation on the two VRPB variants reveals that, our neural heuristic performs favorably against both the conventional and neural heuristic baselines on randomly generated instances and benchmark instances. Moreover, the trained policy network exhibits a desirable capability of generalization to various problem sizes and distributions.

Related Organizations
Keywords

Deep reinforcement learning, Databases and Information Systems, vehicle routing problem (VRP), logistics, OS and Networks, Reviews, Genetic algorithms, Vehicle routing, 004, neural heuristic, Backhaul networks, Deep reinforcement learning (DRL), Search problems, Heuristic algorithms, two-stage attention

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
hybrid
Related to Research communities