
In this paper, a novel optimal energy storage control scheme is investigated in smart grid environments with solar renewable energy. Based on the idea of adaptive dynamic programming (ADP), a self-learning algorithm is constructed to obtain the iterative control law sequence of the battery. Based on the data of the real-time electricity price (electricity rate in brief), the load demand (load in brief), and the solar renewable energy (solar energy in brief), the optimal performance index function, which minimizes the total electricity cost and simultaneously extends the battery's lifetime, is established. A new analysis method of the iterative ADP algorithm is developed to guarantee the convergence of the iterative value function to the optimum under iterative control law sequence for any time index in a period. Numerical results and comparisons are presented to illustrate the effectiveness of the developed algorithm.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 121 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
