Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://hal.archives...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2015
Data sources: Hal
https://doi.org/10.1109/eusipc...
Article . 2015 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An iterative hard thresholding algorithm with improved convergence for low-rank tensor recovery

Authors: de Morais Goulart, José Henrique; Favier, Gérard;

An iterative hard thresholding algorithm with improved convergence for low-rank tensor recovery

Abstract

Recovering low-rank tensors from undercomplete linear measurements is a computationally challenging problem of great practical importance. Most existing approaches circumvent the intractability of the tensor rank by considering instead the multilinear rank. Among them, the recently proposed tensor iterative hard thresholding (TIHT) algorithm is simple and has low cost per iteration, but converges quite slowly. In this work, we propose a new step size selection heuristic for accelerating its convergence, relying on a condition which (ideally) ensures monotonic decrease of its target cost function. This condition is obtained by studying TIHT from the standpoint of the majorization-minimization strategy which underlies the normalized IHT algorithm used for sparse vector recovery. Simulation results are presented for synthetic data tensor recovery and brain MRI data tensor completion, showing that the performance of TIHT is notably improved by our heuristic, with a small to moderate increase of the cost per iteration.

Keywords

[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, tensor completion, iterative hard thresholding, low-rank tensor recovery, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
Related to Research communities