
Recovering low-rank tensors from undercomplete linear measurements is a computationally challenging problem of great practical importance. Most existing approaches circumvent the intractability of the tensor rank by considering instead the multilinear rank. Among them, the recently proposed tensor iterative hard thresholding (TIHT) algorithm is simple and has low cost per iteration, but converges quite slowly. In this work, we propose a new step size selection heuristic for accelerating its convergence, relying on a condition which (ideally) ensures monotonic decrease of its target cost function. This condition is obtained by studying TIHT from the standpoint of the majorization-minimization strategy which underlies the normalized IHT algorithm used for sparse vector recovery. Simulation results are presented for synthetic data tensor recovery and brain MRI data tensor completion, showing that the performance of TIHT is notably improved by our heuristic, with a small to moderate increase of the cost per iteration.
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, tensor completion, iterative hard thresholding, low-rank tensor recovery, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, tensor completion, iterative hard thresholding, low-rank tensor recovery, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
