
Locality is an algorithm characteristic describing a usage level of fast access memory. For example, in case of distributed memory computers we focus on memory of each computational node. To achieve the high performance of algorithm implementation one should choose the best possible locality option. Studying the parallel algorithm locality is to estimate the number and volume of data communications. In this work, we formulate and prove the statements for computers with distributed memory that allow us to estimate the asymptotic volume of data communication operations. These estimation results are useful while comparing alternative versions of parallel algorithms during data communication cost analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
