Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint power and duty-cycle design using alternating optimization algorithm under energy harvesting architectures

Authors: Tong Wang; Xiang Yang; Feng Deng; Lin Gao; Yufei Jiang; Zhihua Yang;

Joint power and duty-cycle design using alternating optimization algorithm under energy harvesting architectures

Abstract

In the emerging sixth generation (6G) communication network, energy harvesting (EH) is a promising technology to achieve the unlimited energy supply and hence makes the wireless communication systems self-sustainable in terms of energy. However, in practice, the efficiency of energy harvesting is often low due to the limited device capability. In this paper, we formulate three types of different EH architectures, i.e., the harvest-use architecture, the harvest-store-use architecture, and the harvest-use-store architecture from the perspective of energy storage efficiency. We propose resource allocation schemes to jointly design the sensor power and duty-cycle via an alternating optimization algorithm under the above EH architectures, in both simultaneous and non-simultaneous harvesting and utilization models, aiming at achieving a higher throughput and energy efficiency. Non-ideal circuit power is also considered. Numerical results show that our proposed schemes under EH architectures outperform the existing classic continuous transmission schemes.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!