Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Gronin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
University of Groningen Research Portal
Part of book or chapter of book . 2021
License: taverne
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Visual Analysis of Popping in Progressive Visualization

Authors: Waterink, E.; Kosinka, Jiri; Frey, Steffen;

Visual Analysis of Popping in Progressive Visualization

Abstract

Progressive visualization allows users to examine intermediate results while they are further refined in the background. This makes them increasingly popular when dealing with large data and computationally expensive tasks. The characteristics of how preliminary visualizations evolve over time are crucial for efficient analysis; in particular unexpected disruptive changes between iterations can significantly hamper the user experience. This paper proposes a visualization framework to analyze the refinement behavior of progressive visualization. We particularly focus on sudden significant changes between the iterations, which we denote as popping artifacts, in reference to undesirable visual effects in the context of level of detail representations in computer graphics. Our visualization approach conveys where in image space and when during the refinement popping artifacts occur. It allows to compare across different runs of stochastic processes, and supports parameter studies for gaining further insights and tuning the algorithms under consideration. We demonstrate the application of our framework and its effectiveness via two diverse use cases with underlying stochastic processes: adaptive image space sampling, and the generation of grid layouts.

CCS Concepts: Human-centered computing --> Visualization design and evaluation methods

Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference

Ethan Waterink, Jiri Kosinka, and Steffen Frey

Visualization

151

162

Related Organizations
Keywords

Human centered computing, Visualization design and evaluation methods

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average