Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Runtime Scheduling Policies for Distributed Graph Algorithms

Authors: Jesun Sahariar Firoz; Marcin Zalewski; Andrew Lumsdaine; Martina Barnas;

Runtime Scheduling Policies for Distributed Graph Algorithms

Abstract

In this paper we explore scheduling and runtime system support for unordered distributed graph computations that rely on optimistic (speculative) execution. Performance of such algorithms is impacted by two competing trends: the higher degree of parallelism enabled by optimistic execution in turn requires substantial runtime support. To address the potentially high overhead and scheduling complexity introduced by the runtime, we investigate customizable scheduling policies that augment the scheduler of the underlying runtime to adapt it to a specific graph application. We present several implementations of Distributed Control (DC), a data-driven unordered approach with work prioritization and demonstrate that customizable scheduling policies result in the most efficient implementation, outperforming the well-known ?-stepping Single-Source Shortest Paths (SSSP) and Jones-Plassmann vertex-coloring algorithms. We apply two scheduling techniques, flow control and adaptive frequency of network progress, which allow application-level control over the balance of domain work and the runtime work. Experimental results show the benefit of such application-aware scheduling for irregular distributed graph algorithms.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!