Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distributed-Memory Parallel Algorithms for Distance-2 Coloring and Related Problems in Derivative Computation

Authors: Doruk Bozdag; Ümit V. Çatalyürek; Assefaw H. Gebremedhin; Fredrik Manne; Erik G. Boman; Füsun Özgüner;

Distributed-Memory Parallel Algorithms for Distance-2 Coloring and Related Problems in Derivative Computation

Abstract

The distance-2 graph coloring problem aims at partitioning the vertex set of a graph into the fewest sets consisting of vertices pairwise at distance greater than 2 from each other. Its applications include derivative computation in numerical optimization and channel assignment in radio networks. We present efficient, distributed-memory, parallel heuristic algorithms for this NP-hard problem as well as for two related problems used in the computation of Jacobians and Hessians. Parallel speedup is achieved through graph partitioning, speculative (iterative) coloring, and a bulk synchronous parallel-like organization of parallel computation. Results from experiments conducted on a PC cluster employing up to 96 processors and using large-size real-world as well as synthetically generated test graphs show that the algorithms are scalable. In terms of quality of solution, the algorithms perform remarkably well—the numbers of colors used by the parallel algorithms are observed to be very close to the numbers used by their sequential counterparts, which in turn are quite often near optimal. Moreover, the experimental results show that the parallel distance-2 coloring algorithm compares favorably with the alternative approach of solving the distance-2 coloring problem on a graph $\mathcal{G}$ by first constructing the square graph $\mathcal{G}^2$ and then applying a parallel distance-1 coloring algorithm on $\mathcal{G}^2$. Implementations of the algorithms are made available via the Zoltan toolkit.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Top 10%
Beta
sdg_colorsSDGs:
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!