Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Toxico...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental Toxicology and Chemistry
Article . 2022 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY NC
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2022
License: CC BY NC
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature—Assessment of Biochemical, Morphological, and Life-History Traits

Authors: Laurent Boualit; Hugo Cayuela; Loic Cattin; Nathalie Chèvre;

The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature—Assessment of Biochemical, Morphological, and Life-History Traits

Abstract

Abstract Amphibia is the most threatened class among vertebrates, with >40% of the species threatened with extinction. Pollution is thought to alter amphibian population dynamics. With the growing interest in behavioral ecotoxicology, the neurotoxic organophosphate pesticides are of special concern. Understanding how exposure to neurotoxics leads to behavioral alterations is of crucial importance, and mechanistic endpoints should be included in ecotoxicological methods. In the present study, we tested an 8-day assay to evaluate the toxicity of two organophosphates, diazinon and chlorpyrifos, on Xenopus laevis, that is, on biochemical, morphological, and life-history traits related to locomotion capacities. The method involves measuring biomarkers such as glutathione-S-transferase (GST) and ethoxyresorufin-O-deethylase (EROD; two indicators of the detoxifying system) in the 8-day-old larvae as well as acetylcholinesterase (AChE) activity (involved in the nervous system) in 4-day-old embryos and 8-day-old larvae. Snout-to-vent length and snout-to-tail length of 4-day-old embryos and 8-day larvae were recorded as well as the corresponding growth rate. Fin and tail muscle widths were measured as well for testing changes in tail shape. Both tests showed effects of both organophosphates on AChE activity; however, no changes were observed in GST and EROD. Furthermore, exposure to chlorpyrifos demonstrated impacts on morphological and life-history traits, presaging alteration of locomotor traits. In addition, the results suggest a lower sensitivity to chlorpyrifos of 4-day-old embryos compared to 8-day-old larvae. Tests on other organophosphates are needed to test the validity of this method for the whole organophosphate group. Environ Toxicol Chem 2022;41:2688–2699. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Country
Switzerland
Keywords

Insecticides, Ecotoxicology, Environmental Toxicology, Glutathione, Xenopus laevis, Organophosphorus Compounds, Transferases, Amphibians; Organic contaminants; Aquatic toxicology, Diazinon, Larva, Acetylcholinesterase, Cytochrome P-450 CYP1A1, Animals, Chlorpyrifos

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
hybrid