Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TinyWiFi

making network protocol evaluation portable across multiple phy-link layers
Authors: Muhammad Hamad Alizai; Hanno Wirtz; Bernhard Kirchen; Tobias Vaegs; Omprakash Gnawali; Klaus Wehrle;
Abstract

Multihop wireless networks, such as sensor-, ad hoc- and mesh-networks, although different share some common characteristics. All these networks exhibit link dynamics. Protocols designed for these wireless networks must overcome the challenge of link dynamics and the resulting churn in network topology. Due to structural and topological similarities, protocols developed for one class of wireless network should also be applicable in the other classes. However, network-layer protocols are usually developed for and tested in only one class of wireless network due to the lack of a platform that allows testing of protocols across different classes of networks. As a result, we unnecessarily constrain the range of settings and scenarios in which we test network protocols. In this paper, we present TinyWifi, a platform for executing native sensornet protocols on Linux-driven wireless devices. TinyWifi builds on nesC code base that abstracts from TinyOS and enables the execution of nesC-based protocols in Linux. Using this abstraction, we expand the applicability and means of protocol execution from one class of wireless network to another without re-implementation. We demonstrate the generality of TinyWifi by evaluating four well-established protocols on IEEE 802.11 and 802.15.4 based testbeds using a single implementation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!