
doi: 10.2298/pim1614141o
handle: 11563/125006
We introduce and study the sequence of bivariate Generalized Bernstein operators {Bm,s}m,s, m, s ? N, Bm,s=I?(I?Bm)s, Bi m = Bm(Bi?1 m), where Bm is the bivariate Bernstein operator. These operators generalize the ones introduced and studied independently in the univariate case by Mastroianni and Occorsio [Rend. Accad. Sci. Fis. Mat. Napoli 44 (4) (1977), 151- 169] and by Micchelli [J. Approx. Theory 8 (1973), 1-18] (see also Felbecker [Manuscripta Math. 29 (1979), 229-246]). As well as in the one-dimesional case, for m fixed the sequence {Bm,s(f)}s can be successfully employed in order to approximate ?very smooth? functions f by reusing the same data points f (i/m,j/m), i=0,1,...,m, j=0,1,...,m, since the rate of convergence improves as s increases. A stable and convergent cubature rule on the square [0,1]2, based on the polynomials Bm,s(f) is constructed. Moreover, a Nystrom method based on the above mentioned cubature rule is proposed for the numerical solution of two-dimensional Fredholm integral equations on [0, 1]2. The method is numerically stable, convergent and the involved linear systems are well conditioned. Some algorithm details are given in order to compute the entries of the linear systems with a reduced time complexity. Moreover the procedure can be significantly simplified in the case of equations having centrosymmetric kernels. Finally, some numerical examples are provided in order to illustrate the accuracy of the cubature formula and the computational efficiency of the Nystrom method.
Cubature formula, cubature formula, Fredholm integral equations, Numerical methods for integral equations, Nyström method, Iterated Bernstein polynomial, Nyström method, Multivariate polynomial approximation, Approximation by polynomials, iterated Bernstein polynomials, Mathematics (all), multivariate polynomial approximation
Cubature formula, cubature formula, Fredholm integral equations, Numerical methods for integral equations, Nyström method, Iterated Bernstein polynomial, Nyström method, Multivariate polynomial approximation, Approximation by polynomials, iterated Bernstein polynomials, Mathematics (all), multivariate polynomial approximation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
