Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chaotic Jaya Optimization Algorithm With Computer Vision-Based Soil Type Classification for Smart Farming

Authors: Hussain Alshahrani; Hend Khalid Alkahtani; Khalid Mahmood; Mofadal Alymani; Gouse Pasha Mohammed; Amgad Atta Abdelmageed; Sitelbanat Abdelbagi; +1 Authors

Chaotic Jaya Optimization Algorithm With Computer Vision-Based Soil Type Classification for Smart Farming

Abstract

Smart farming helps to increase yield by smartly deciding the steps that should be practised in the season. A few components of precision farming are recommending the crops for cultivation, predicting the weather conditions, examining the soil; determining the pesticides, and fertilizers that have to be used. Smart Farming utilizes advanced technologies namely data mining (DM), machine learning (ML), the Internet of Things (IoT), and data analytics for collecting the data, predicting the outcomes and training the system. One of the most significant parameters is proper soil prediction which decides the proper crop and is manually executed by the agriculturalists. Hence, the farmer’s efficacy can be improved by producing automated tools for soil type classification. This study presents a Chaotic Jaya Optimization Algorithm with Computer Vision based Soil Type Classification (CJOCV-STC) for smart farming. The presented CJOCV-STC technique applies CV with metaheuristic algorithms for the automated soil classification process, which identifies the soil into distinct types. To accomplish this, the presented CJOCV-STC technique uses the SqueezeNet model for producing a set of feature vectors. To improve the performance of the SqueezeNet model, the CJO algorithm is used for the hyperparameter tuning process. Moreover, the Elman neural network (ENN) technique is applied for soil type classification and the parameters related to it can be adjusted by the chicken swarm algorithm (CSA). The soil classification performance of the CJOCV-STC method can be studied on the Kaggle dataset and the outcomes stated the better performance of the CJOCV-STC algorithm over other recent approaches with increased accuracy of 98.47%.

Keywords

Smart farming, soil type classification, deep learning, chaotic systems, Electrical engineering. Electronics. Nuclear engineering, computer vision, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold