Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete adaptive sliding control of automotive powertrains

Authors: Selina Pan; Kyle Edelberg; J. Karl Hedrick;

Discrete adaptive sliding control of automotive powertrains

Abstract

Automotive powertrain control strategies are a key component of the software design process for vehicle systems. During implementation of control algorithms on real systems, errors often arise that prove costly if they are not detected until the Verification & Validation process. Thus, it is advantageous to mitigate potential uncertainties early on in the design. Specifically, in this paper, we present the control algorithm derivation with the direct incorporation of uncertainty from the system model. We incorporate an unknown parameter representing significant model uncertainty and design to that scenario using a nonlinear, discrete-time sliding control strategy. Additionally, we incorporate an adaptation law to estimate and update the unknown parameter online in order to decrease the control actuation effort. A Simulink representation of the cold start engine emissions process is used as a case study on which the control and adaptation strategy is demonstrated. Simulation results demonstrate that this adaptive formulation yields superior performance over its non-adaptive counterpart by successfully estimating the unknown model parameters and driving tracking error to zero in steady-state.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!