Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/islped...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital Implementation of On-Chip Hebbian Learning for Oscillatory Neural Network

Authors: Luhulima, Edgar; Abernot, Madeleine; Corradi, Federico; Todri-Sanial, Aida;

Digital Implementation of On-Chip Hebbian Learning for Oscillatory Neural Network

Abstract

This work proposes a digital implementation of an Oscillatory Neural Network (ONN) in a Field-Programmable Gate Array (FPGA), demonstrating excellent associative memory capabilities. This work goes beyond previous implementations by enabling on-chip learning directly in the FPGA. More specifically, we implement on-chip Hebbian learning, and we compare three different design strategies. The first strategy takes advantage of a System-on-Chip (SoC) composed of a Processing System (PS) and Programmable Logic resources (PL) to integrate Hebbian learning in PS. The two other strategies implement the Hebbian learning directly in PL. We compare the three different design strategies on a digit recognition task in terms of accuracy, utilization, execution time, and maximum frequency. We show that implementing Hebbian learning in PL gives more advantages in terms of resource utilization and latency than implementing Hebbian in PS with several orders of magnitude because the weight matrix computation is performed in hardware. Moreover, we develop an application interface to demonstrate the pattern learning and recognition capabilities of our digital ONN implementation.

Keywords

Artificial intelligence, FPGA implementation, pattern recognition, Hebbian learning, oscillatory neural network, auto-associative memory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!