Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2003
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

TOPOLOGICAL PEELING AND APPLICATIONS

Topological peeling and applications.
Authors: Chen, Danny; Luan, Shuang; Xu, Jinhui;

TOPOLOGICAL PEELING AND APPLICATIONS

Abstract

We present a new approach, called topological peeling, for traversing a portion AR of the arrangement formed by n lines within a convex region R on the plane. Topological peeling visits the cells of AR in a fashion of propagating a "wave" of a special shape (called a double-wriggle curve) starting at a single source point. This special traversal fashion enables us to solve several problems (e.g., computing shortest paths) on planar arrangements to which previously best known arrangement traversal techniques such as topological sweep and topological walk may not be directly applicable. Our topological peeling algorithm takes O(K + n log (n + r)) time and O(n + r) space, where K is the number of cells in AR and r is the number of boundary vertices of R. Comparing with topological walk, topological peeling uses a simpler and more efficient way to sweep different types of lines, and relies heavily on exploring small local structures, rather than a much larger global structure. Experiments show that, on average, topological peeling outperforms topological walk by 10–25% in execution time.

Country
China (People's Republic of)
Keywords

shortest path, space efficient algorithms, Computational aspects related to convexity, arrangement, Computer graphics; computational geometry (digital and algorithmic aspects), Analysis of algorithms, topological walk

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!