Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Canter...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecosphere
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Ecosphere
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrative analysis of stressor gradients reveals multiple discrete trait‐defined axes underlie community assembly

Authors: Isabelle C. Barrett; Angus R. McIntosh; Catherine M. Febria; S. Elizabeth Graham; Francis J. Burdon; Justin P. F. Pomeranz; Helen J. Warburton;

Integrative analysis of stressor gradients reveals multiple discrete trait‐defined axes underlie community assembly

Abstract

AbstractThe generalizable functional attributes of organisms (traits) relate strongly to their environment across multiple levels of biological organization, making trait‐based approaches a powerful mechanistic framework to understand species distributions and community composition in relation to environmental change. To investigate how a wide range of stressor types shape stream macroinvertebrate communities, we conducted an integrative analysis using community and taxon trait information across drying, flooding, eutrophication, fine sediment, and acid mine drainage (AMD) gradients. Each gradient spanned relatively unimpacted to severely impacted sites. To characterize community change in response to stressors, we incorporated abundance‐based trait information from all stressor gradients in a single trait‐based ordination (nonmetric multidimensional scaling), defining the trait space within which each stressor gradient acted. We hypothesized that different stressors would apply different environmental filters, moving communities along distinct axes in trait space and resulting in communities with definable trait combinations. Particularly strong relationships were associated with anthropogenically derived stressors (fine sediment, eutrophication, and AMD) compared to natural stressors (drying and flooding). Anthropogenic stressors instigated significant movement of communities along multiple axes in trait space, likely driven by limited adaptation to these novel stressors. We demonstrate that trait‐based analysis of communities across multiple stressor gradients can support a more comprehensive understanding of how community composition changes than taxonomic methods or investigation of a single stressor type, and could underpin community‐focused management actions.

Keywords

disturbance, environmental filter, 570, 550, Ecology, ANZSRC::330404 Land use and environmental planning, ANZSRC::310304 Freshwater ecology, 31 - Biological sciences::3103 - Ecology::310304 - Freshwater ecology, eutrophication, flooding, ANZSRC::410402 Environmental assessment and monitoring, ANZSRC::4102 Ecological applications, traits, community dynamics, ANZSRC::3103 Ecology, community assembly, 31 - Biological sciences::3109 - Zoology::310907 - Animal physiological ecology, drying, QH540-549.5, acid mine drainage

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green
gold