Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ergodic Theory and Dynamical Systems
Article . 2017 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2015
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint spectral radius, Sturmian measures and the finiteness conjecture

Authors: Jenkinson, O; Pollicott, M;

Joint spectral radius, Sturmian measures and the finiteness conjecture

Abstract

The joint spectral radius of a pair of $2\times 2$ real matrices $(A_{0},A_{1})\in M_{2}(\mathbb{R})^{2}$ is defined to be $r(A_{0},A_{1})=\limsup _{n\rightarrow \infty }\max \{\Vert A_{i_{1}}\cdots A_{i_{n}}\Vert ^{1/n}:i_{j}\in \{0,1\}\}$, the optimal growth rate of the norm of products of these matrices. The Lagarias–Wang finiteness conjecture [Lagarias and Wang. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl.214 (1995), 17–42], asserting that $r(A_{0},A_{1})$ is always the $n$th root of the spectral radius of some length-$n$ product $A_{i_{1}}\cdots A_{i_{n}}$, has been refuted by Bousch and Mairesse [Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture. J. Amer. Math. Soc.15 (2002), 77–111], with subsequent counterexamples presented by Blondel et al [An elementary counterexample to the finiteness conjecture. SIAM J. Matrix Anal.24 (2003), 963–970], Kozyakin [A dynamical systems construction of a counterexample to the finiteness conjecture. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference (Seville, Spain, December 2005). IEEE, Piscataway, NJ, pp. 2338–2343] and Hare et al [An explicit counterexample to the Lagarias–Wang finiteness conjecture. Adv. Math.226 (2011), 4667–4701]. In this article, we introduce a new approach to generating finiteness counterexamples, and use this to exhibit an open subset of $M_{2}(\mathbb{R})^{2}$ with the property that each member $(A_{0},A_{1})$ of the subset generates uncountably many counterexamples of the form $(A_{0},tA_{1})$. Our methods employ ergodic theory; in particular, the analysis of Sturmian invariant measures. This approach allows a short proof that the relationship between the parameter $t$ and the Sturmian parameter ${\mathcal{P}}(t)$ is a devil’s staircase.

Country
United Kingdom
Related Organizations
Keywords

FOS: Mathematics, Norms of matrices, numerical range, applications of functional analysis to matrix theory, Relations of ergodic theory with number theory and harmonic analysis, Dynamical Systems (math.DS), Mathematics - Dynamical Systems, QA, Sturmian measure, joint spectral radius

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
Green
bronze