Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
Asymptotic Analysis
Article . 2022
Data sources: mEDRA
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The stiff Neumann problem: Asymptotic specialty and “kissing” domains

The stiff Neumann problem: asymptotic specialty and ``kissing'' domains
Authors: V. Chiado' Piat; L. D'Elia; S. A. Nazarov;

The stiff Neumann problem: Asymptotic specialty and “kissing” domains

Abstract

We study the stiff spectral Neumann problem for the Laplace operator in a smooth bounded domain [Formula: see text] which is divided into two subdomains: an annulus [Formula: see text] and a core [Formula: see text]. The density and the stiffness constants are of order [Formula: see text] and [Formula: see text] in [Formula: see text], while they are of order 1 in [Formula: see text]. Here [Formula: see text] is fixed and [Formula: see text] is small. We provide asymptotics for the eigenvalues and the corresponding eigenfunctions as [Formula: see text] for any m. In dimension 2 the case when [Formula: see text] touches the exterior boundary [Formula: see text] and [Formula: see text] gets two cusps at a point [Formula: see text] is included into consideration. The possibility to apply the same asymptotic procedure as in the “smooth” case is based on the structure of eigenfunctions in the vicinity of the irregular part. The full asymptotic series as [Formula: see text] for solutions of the mixed boundary value problem for the Laplace operator in the cuspidal domain is given.

Keywords

Variational methods for higher-order elliptic equations, Neumann Laplacian, Asymptotic distributions of eigenvalues in context of PDEs, Neumann Laplacian; asymptotics of eigenvalues and eigenfunctions; stiff Neumann problem; domain with cuspidal point; kissing domains, Mathematics - Analysis of PDEs, asymptotics of eigenvalues and eigenfunctions, FOS: Mathematics, domain with cuspidal point, kissing domains, stiff Neumann problem, Singular perturbations in context of PDEs, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
bronze
Related to Research communities