Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Japanese Geotechnica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Japanese Geotechnical Society Special Publication
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigations on microstructure characteristics of porous pavement based on X-ray CT scanning

Authors: Trzs, Tom; Grabe, Jürgen; Lu, Guoyang; Oeser, Markus;

Investigations on microstructure characteristics of porous pavement based on X-ray CT scanning

Abstract

Gathering insights on materials at pore scale using digital imaging techniques, such as X-ray computed tomography (CT), gains more and more attention in various fields of engineering disciplines. The better understanding of material properties, internal structures, and material behaviour has generated many scientific and industrial advances. Investigations on porous materials, especially the visualisation of the pore space, allow the derivation of macroscopic material properties and provide a basis for numerical calculations, e. g. flow or contaminant transport through threedimensional pore structures. The investigated porous material in this study is used in water-permeable road constructions as a novel pavement material aiming at instant drainage of rainfall into the subgrade and subsoil. Commonly used porous asphalt is made utilising bitumen-based binder materials. In this case, however, an innovative binder material based on polyurethane (PU) is used to form a flexible and porous pavement layer. The utilisation of this binder material not only increases the functionalities of the pavement layer but also increases rutting resistance and fatigue behaviour. This paper gives insights on the pore space obtained from CT-scans of two different pavement compositions of novel porous pavement material. The compositions vary in terms of particle size distribution of the utilised grains and the maximum grain diameter. The segmentation process of the obtained CT-images into the components of the multiphase media, i. e. grains, pore space, and binder material, as well as the reproduction of the three-dimensional models will be presented. Also results of investigations on the representative elementary volume for two volume-dependent properties will be demonstrated.

Keywords

X-ray CT, Representative elementary volume, Pavement material, Porous asphalt, Image analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
  • 1
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
1
gold