
TUHH
Funder (2)
89 Projects, page 1 of 18
assignment_turned_in Project2011 - 2014 TUHHFunder: EC Project Code: 270561All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0b8d19d5f8340d70dec64ef0a3d18541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::0b8d19d5f8340d70dec64ef0a3d18541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022 TU Delft, TUHHFunder: EC Project Code: 865300Overall Budget: 917,500 EURFunder Contribution: 915,250 EURThe high-level objective of the proposed GLOWOPT project is the development and validation of Climate Cost Functions (CCFs) with respect to minimizing global warming and their application to the multidisciplinary design optimization of next-generation aircraft for relevant market segments. Several objectives are set in order to reach this target. The first objective is to provide an overview of the state of the art on the scientific background of the relation between aircraft design and operation and its climate impact. The second objective is to derive characteristic aircraft design requirements, primarily payload and range, based on statistical data analysis of the worldwide aircraft fleet and route structure for future entries into Service using a comprehensive air traffic forecast model. The third objective is to develop climate cost functions for the use in the aircraft design optimisation, which reliably represent the climate impact of CO2, NOx, H2O emissions, as well as contrail-cirrus effects. The fourth objective is to perform a Multidisciplinary Design Optimization with respect to the climate cost function to find a set of operational parameters, design parameters and aircraft technologies that minimize the climate impact of the aircraft design using an existing MDO environment that applies the developed CCFs as objective function. The fifth and final objective is to perform an assessment of the aircraft designs chosen in order to quantify their impact on important metrics such as landing and take-off noise, emissions and cash operating cost. For this purpose, a higher-fidelity simulation integrating existing flight performance, emission and climate impact models is adapted and applied to simulate the aircraft design solution in an operational environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c289ab978d1a32c7f99f4f72ab203f95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 404visibility views 404 download downloads 570 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c289ab978d1a32c7f99f4f72ab203f95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022 AUTODESK LIMITED, TUD, TUHHFunder: EC Project Code: 831872Overall Budget: 1,022,390 EURFunder Contribution: 907,337 EURAM technologies are layer-based and tool-free manufacturing processes, which represent a direct interface between the virtual product development and the real-world production of final products. As fundamental part of the “industrial internet of things” (IIoT), AM is considered to be a flexible solution for a demand-driven supply of individualized products. Especially the LBM technology is considered predestined for industrial production due to its intrinsic characteristic of processing metal additively. Moreover, physical properties similar to the ones of conventionally manufactured parts are achievable. LBM enables the flexible and fast production of near net-shape metal parts with up to 100 % density. MOnACO aims at the design optimization and successful additive manufacturing (AM) of a large-scale (diameter of 1 m) aircraft engine’s component via laser beam melting (LBM) technology. The project contains the development of new design guidelines and tools for the redesign of large-scale LBM structures and the implementation of the complete AM process chain. In accordance to the topic description (JTI-CS2-2018-CfP08-ENG-01-32 ), the approach splits into three main tasks: Component analysis, design and optimization; additive manufacturing optimization and validation; component design experimental investigation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6ae29beb81f02d6adac8e2acafd9be6a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 527visibility views 527 download downloads 216 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::6ae29beb81f02d6adac8e2acafd9be6a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2014 Roma Tre University, BDCA, TUHHFunder: EC Project Code: 247468All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::bf16595063d9b9a48947e6f13e073cd4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::bf16595063d9b9a48947e6f13e073cd4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2017 INSTITUTE FOR CHEMICAL PROCESSING OF COAL ICHPW, Heriot-Watt University, PCzFunder: EC Project Code: 612699All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f1dbd26b5626d076634662f4670cd279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::f1dbd26b5626d076634662f4670cd279&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
