Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Open Repository and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Proteomics
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement

Authors: Ezequiel Matias Lentz; Hervé Vanderschuren; Wilhelm Gruissem; Ima M. Zainuddin; Ima M. Zainuddin;

Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement

Abstract

In the last decade proteomics studies have gained increasing importance in plant research. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins have been particularly instrumental to characterize proteomes and their modulation during plant development, biotic and abiotic stresses. Despite important advances, plant proteome analysis, including those of model plant species, remain constrained by limitations inherent to proteomics techniques and data interpretation. Here we review the approaches and achievements of proteomics with model plant and crop species (i.e. Arabidopsis and rice) and discuss the current limitations of crop proteomics. We anticipate future directions that could advance the contribution of plant proteomics to crop improvement.

Keywords

Crops, Agricultural, Proteomics, Biological Markers/metabolism, Electrophoresis, Gel, Two-Dimensional/methods, Agriculture/methods, Crops, Agricultural/genetics, Arabidopsis, Plant Development, Breeding, Biochimie, biophysique & biologie moléculaire, Plant Proteins/genetics, Biotic stress, Stress, Physiological, Electrophoresis, Gel, Two-Dimensional, Arabidopsis/genetics, Plant Diseases/genetics, Crop proteomics, Plant Diseases, Plant Proteins, Proteomics/methods/trends, Agriculture, Oryza, Biomarker, Plants, Plants/genetics/metabolism, Abiotic stress, Life sciences, Oryza sativa/genetics, Sciences du vivant, Crop breeding, Model plant species, Protein Processing, Post-Translational, Biomarkers, Biochemistry, biophysics & molecular biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!