Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computational Method...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computational Methods in Applied Mathematics
Article . 2004 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2004
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique

A class of singularly perturbed convection-diffusion problems with a moving interior layer. An a posteriori adaptive mesh technique
Authors: Shishkin, G.I.; Shishkina, L.P.; Hemker, P.W.;

A Class of Singularly Perturbed Convection-Diffusion Problems with a Moving Interior Layer. An a Posteriori Adaptive Mesh Technique

Abstract

AbstractWe study numerical approximations for a class of singularly perturbed convection-diffusion type problems with a moving interior layer. In a domain (segment) with a moving interface between two subdomains, we consider an initial boundary value problem for a singularly perturbed parabolic convection-diffusion equation. Convection fluxes on the subdomains are directed towards the interface. The solution of this problem has a moving transition layer in the neighbourhood of the interface. Unlike problems with a stationary layer, the solution exhibits singular behaviour also with respect to the time variable. Well-known upwind finite difference schemes for such problems do not converge ε-uniformly in the uniform norm. In the case of rectangular meshes which are (a priori or a posteriori ) locally condensed in the transition layer. However, the condition for convergence can be considerably weakened if we take the geometry of the layer into account, i.e., if we introduce a new coordinate system which captures the interface. For the problem in such a coordinate system, one can use either an a priori, or an a posteriori adaptive mesh technique. Here we construct a scheme on a posteriori adaptive meshes (based on the solution gradient), whose solution converges ‘almost ε-uniformly’.

Keywords

error bound, almost \(\varepsilon\)-uniform convergence, 510, finite difference schemes, a posteriori adaptive mesh, Error bounds for initial value and initial-boundary value problems involving PDEs, initial boundary value problem, moving interior/transition layer, Finite difference methods for initial value and initial-boundary value problems involving PDEs, Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs, convection-diffusion equation, Initial value problems for second-order parabolic equations, Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs, singular perturbation, Singular perturbations in context of PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
hybrid