
In cancer studies, it is commonplace that a fraction of patients participating in the study are cured, such that not all of them will experience a recurrence, or death due to cancer. Also, it is plausible that some covariates, such as the treatment assigned to the patients or demographic characteristics, could affect both the patients’ survival rates and cure/incidence rates. A common approach to accommodate these features in survival analysis is to consider a mixture cure survival model with the incidence rate modeled by a logistic regression model and latency part modeled by the Cox proportional hazards model. These modeling assumptions, though typical, restrict the structure of covariate effects on both the incidence and latency components. As a plausible recourse to attain flexibility, we study a class of semiparametric mixture cure models in this article, which incorporates two single-index functions for modeling the two regression components. A hybrid nonparametric maximum likelihood estimation method is proposed, where the cumulative baseline hazard function for uncured subjects is estimated nonparametrically, and the two single-index functions are estimated via Bernstein polynomials. Parameter estimation is carried out via a curated expectation-maximization algorithm. We also conducted a large-scale simulation study to assess the finite-sample performance of the estimator. The proposed methodology is illustrated via application to two cancer datasets.
Likelihood Functions, Models, Statistical, Incidence, Survival analysis, Survival Analysis, Mixture cure models, Expectation-maximization algorithm, Bernstein polynomial, Neoplasms, Humans, Computer Simulation, Sieve estimation, Algorithms, Proportional Hazards Models
Likelihood Functions, Models, Statistical, Incidence, Survival analysis, Survival Analysis, Mixture cure models, Expectation-maximization algorithm, Bernstein polynomial, Neoplasms, Humans, Computer Simulation, Sieve estimation, Algorithms, Proportional Hazards Models
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
