Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the ACM on Programming Languages
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Descartes
Article . 2019
Data sources: HAL Descartes
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Categorical combinatorics of scheduling and synchronization in game semantics

Authors: Melliès, Paul-André;

Categorical combinatorics of scheduling and synchronization in game semantics

Abstract

Game semantics is the art of interpreting types as games and programs as strategies interacting in space and time with their environment. In order to reflect the interactive behavior of programs, strategies are required to follow specific scheduling policies. Typically, in the case of a purely sequential programming language, the program (Player) and its environment (Opponent) will play one after the other, in a strictly alternating way. On the other hand, in the case of a concurrent language, Player and Opponent will be allowed to play several moves in a row, in a non-alternating way. In both cases, the scheduling policy is designed very carefully in order to ensure that the strategies synchronize properly and compose well when plugged together. A longstanding conceptual problem has been to understand when and why a given scheduling policy works and is compositional in that sense. In this paper, we exhibit a number of simple and fundamental combinatorial structures which ensure that a given scheduling policy encoded as synchronization template defines a symmetric monoidal closed (and in fact star-autonomous) bicategory of games, strategies and simulations. To that purpose, we choose to work at a very general level, and illustrate our method by constructing two template game models of linear logic with different flavors (alternating and non-alternating) using the same categorical combinatorics, performed in the category of small categories. As a whole, the paper may be seen as a hymn in praise of synchronization, building on the notion of synchronization algebra in process calculi and adapting it smoothly to programming language semantics, using a combination of ideas at the converging point of game semantics and of categorical algebra.

Country
France
Keywords

Synchronization algebras, Denotational semantics, [MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA], [INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO], Game semantics, [MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG], [MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT], [MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT], [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL], Template games, [INFO.INFO-MS] Computer Science [cs]/Mathematical Software [cs.MS], [INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL], Concurrency, Categorical semantics, Concurrent non-alternating games, Bicategorical models of linear logic, [INFO.INFO-GT] Computer Science [cs]/Computer Science and Game Theory [cs.GT], [MATH.MATH-LO] Mathematics [math]/Logic [math.LO], Sequential alternating games, Theory of computation, [INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green
Published in a Diamond OA journal