
arXiv: 2404.17775
The random $k$-XORSAT problem is a random constraint satisfaction problem of $n$ Boolean variables and $m=rn$ clauses, which a random instance can be expressed as a $G\mathbb{F}(2)$ linear system of the form $Ax=b$, where $A$ is a random $m \times n$ matrix with $k$ ones per row, and $b$ is a random vector. It is known that there exist two distinct thresholds $r_{core}(k) < r_{sat}(k)$ such that as $n \rightarrow \infty$ for $r < r_{sat}(k)$ the random instance has solutions with high probability, while for $r_{core} < r < r_{sat}(k)$ the solution space shatters into an exponential number of clusters. Sequential local algorithms are a natural class of algorithms which assign values to variables one by one iteratively. In each iteration, the algorithm runs some heuristics, called local rules, to decide the value assigned, based on the local neighborhood of the selected variables under the factor graph representation of the instance. We prove that for any $r > r_{core}(k)$ the sequential local algorithms with certain local rules fail to solve the random $k$-XORSAT with high probability. They include (1) the algorithm using the Unit Clause Propagation as local rule for $k \ge 9$, and (2) the algorithms using any local rule that can calculate the exact marginal probabilities of variables in instances with factor graphs that are trees, for $k\ge 13$. The well-known Belief Propagation and Survey Propagation are included in (2). Meanwhile, the best known linear-time algorithm succeeds with high probability for $r < r_{core}(k)$. Our results support the intuition that $r_{core}(k)$ is the sharp threshold for the existence of a linear-time algorithm for random $k$-XORSAT.
full version of the paper published at ICALP 2024
FOS: Computer and information sciences, Computer Science - Computational Complexity, Sequential local algorithms, Average-case complexity, Computational Complexity (cs.CC), Overlap gap property, Random k-XORSAT, 004, Phase transition, ddc: ddc:004
FOS: Computer and information sciences, Computer Science - Computational Complexity, Sequential local algorithms, Average-case complexity, Computational Complexity (cs.CC), Overlap gap property, Random k-XORSAT, 004, Phase transition, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
