Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Big Earth Dataarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Earth Data
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Big Earth Data
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Time-first approach for land cover mapping using big Earth observation data time-series in a data cube – a case study from the Lake Geneva region (Switzerland)

Authors: Giuliani, Gregory;

Time-first approach for land cover mapping using big Earth observation data time-series in a data cube – a case study from the Lake Geneva region (Switzerland)

Abstract

Accurate, consistent, and high-resolution Land Use & Cover (LUC) information is fundamental for effectively monitoring landscape dynamics and better apprehending drivers, pressures, state, and impacts on land systems. Nevertheless, the availability of such national products with high thematic accuracy is still limited and consequently researchers and policymakers are constrained to work with data that do not necessarily reflect on-the-ground realities impending to correctly capture details of landscape features as well as limiting the identification and quantification of drivers and rate of change. Hereafter, we took advantage of the Switzerland’s official LUC statistical sampling survey and dense time-series of Sentinel-2 data, combining them with Machine and Deep Learning methods to produce an accurate and high spatial resolution land cover map over the Lake Geneva region. Findings suggest that time-first approach is a valuable alternative to space-first approaches, accounting for the intra-annual variability of classes, hence improving classification performances. Results demonstrate that Deep Learning methods outperform more traditional Machine Learning ones such as Random Forest, providing more accurate predictions with lower uncertainty. The produced land cover map has a high accuracy, an improved spatial resolution, while at the same time preserving the statistical significance (i.e. class proportion) of the official national dataset. This work paves the way towards the objective to produce a yearly high resolution land cover map of Switzerland and potentially implement a continuous land change monitoring capability. However further work is required to properly address challenges such as the need for increased temporal resolution for LUC information or the quality of training samples.

Country
Switzerland
Keywords

Land cover, QE1-996.5, 333.7-333.9, time-series, Arealstatistik, SITS, Geology, Time- series, G, Geography. Anthropology. Recreation, Sentinel-2

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold