Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Image and Vision Com...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Image and Vision Computing
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Designing a symmetric classifier for image annotation using multi-layer sparse coding

Authors: Tariq, Amara; Foroosh, Hassan;

Designing a symmetric classifier for image annotation using multi-layer sparse coding

Abstract

Abstract Automatic annotation of images with descriptive words is a challenging problem with vast applications in the areas of image search and retrieval. This problem can be viewed as a label-assignment problem by a classifier dealing with a very large set of labels, i.e., the vocabulary set. We propose a novel annotation method that employs two layers of sparse coding and performs coarse-to-fine labeling. Themes extracted from the training data are treated as coarse labels. Each theme is a set of training images that share a common subject in their visual and textual contents. Our system extracts coarse labels for training and test images without requiring any prior knowledge. Vocabulary words are the fine labels to be associated with images. Most of the annotation methods achieve low recall due to the large number of available fine labels, i.e., vocabulary words. These systems also tend to achieve high precision for highly frequent words only. On the other hand, text mining literature discusses a general trend where relatively rare/moderately frequent words are more important for search retrieval process than the extremely frequent words. Our system not only outperforms various previously proposed annotation systems, but also achieves symmetric response in terms of precision and recall. Our system scores and maintains high precision for words with a wide range of frequencies. Such behavior is achieved by intelligently reducing the number of available fine labels or words for each image based on coarse labels assigned to it.

Related Organizations
Keywords

Sparse coding, Symmetric classifier response, Automatic image annotation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!