Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Journal on Selected Areas in Communications
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cache-Aided Variable-Length Coding with Perfect Privacy

Authors: Amirreza Zamani; Mikael Skoglund;

Cache-Aided Variable-Length Coding with Perfect Privacy

Abstract

A cache-aided compression problem with perfect privacy is studied, where a server has access to a database of $N$ files, $(Y_1,...,Y_N)$, each of size $F$ bits. The server is connected to $K$ users through a shared link, where each user has access to a local cache of size $MF$ bits. In the placement phase, the server fills the users$'$ caches without prior knowledge of their future demands, while the delivery phase takes place after the users send their demands to the server. We assume that each file $Y_i$ is arbitrarily correlated with a private attribute $X$, and an adversary is assumed to have access to the shared link. The users and the server have access to a shared secret key $W$. The goal is to design the cache contents and the delivered message $\cal C$ such that the average length of $\mathcal{C}$ is minimized, while satisfying: i. The response $\cal C$ does not disclose any information about $X$, i.e., $X$ and $\cal C$ are statistically independent yielding $I(X;\mathcal{C})=0$, which corresponds to the perfect privacy constraint; ii. User $i$ is able to decode its demand, $Y_{d_i}$, by using its local cache $Z_i$, delivered message $\cal C$, and the shared secret key $W$. Due to the correlation of database with the private attribute, existing codes for cache-aided delivery do not fulfill the perfect privacy constraint. Indeed, in this work, we propose a lossless variable-length coding scheme that combines privacy-aware compression with coded caching techniques. In particular, we use two-part code construction and Functional Representation Lemma. Furthermore, we propose an alternative coding scheme based on the minimum entropy coupling concept and a greedy entropy-based algorithm. We show that the proposed scheme improves the previous results obtained by Functional Representation Lemma.

Keywords

FOS: Computer and information sciences, Information Theory (cs.IT), Information Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green