Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Future Transportatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Future Transportation
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Future Transportation
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Applying Density-Based Clustering for the Analysis of Emission Events in Real Driving Emissions Calibration

Authors: Sascha Krysmon; Stefan Pischinger; Johannes Claßen; Georgi Trendafilov; Marc Düzgün; Frank Dorscheidt; Martin Nijs; +1 Authors

Applying Density-Based Clustering for the Analysis of Emission Events in Real Driving Emissions Calibration

Abstract

Further reducing greenhouse gas and pollutant emissions from road vehicles is a major task for the automotive industry. Stricter regulations regarding emissions and fleet fuel consumption require the continuous development of new powertrains and methods. In particular, the combination of hybrid powertrains on the technical side and the focus on real driving emissions (RDE) on the legislative side pose significant challenges to the vehicle calibration process. Against this background, new test methods and environments are being investigated to counteract the high number of interactions between hybrid drive systems and quasi-infinite test conditions due to RDE. Complementary to new test environments, innovative methods for data analysis are needed that allow the exploitation of the complete potential of measurement data. The application of such a method in the field of emission calibration is presented in this paper. For this purpose, a clustering method (HDBSCAN) is applied to critical sequences from emission tests. Within this presentation, the clustering process is based on a single signal only. This paper shows how signals of various characteristics can be processed with dynamic time warping and generically structured with the clustering method used. Here, 959 single events are automatically categorized into 24 clusters. This provides a new basis for system evaluation, enabling the automatic identification, categorization, and prioritization of calibration weaknesses. Using twelve signals of different characteristics, the generic usability of the clustering method is demonstrated.

Related Organizations
Keywords

info:eu-repo/classification/ddc/380, data analysis, 380, virtual calibration, Engineering (General). Civil engineering (General), real driving emissions, emission calibration, TA1-2040, density-based clustering, clustering

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold